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Bookshelf Door

How to measure the similarity between two 

multivariate distributions (signatures)?

[1] Rubner, Yossi, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover's distance as a 

metric for image retrieval. International Journal of Computer Vision 40(2): 99-121.

• K-L Divergence (Goldberger et al. 2003)

• Maximum Mean Discrepancy (Borgwardt et al. 2006)

• Earth Mover’s Distance [1]
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EMD is a solution to the old transportation problem.

A set of suppliers: 𝑃 = {(𝑝1, 𝑤𝑝1), … , (𝑝𝑚, 𝑤𝑝𝑚)}

A set of consumers: Q = {(𝑞1, 𝑤𝑞1), … , (𝑞𝑛, 𝑤𝑞𝑛)}
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Wang et al. learn an optimal ground distance matrix directly. [2] 

[2]Wang, F., and Guibas, L. J. 2012. Supervised earth movers distance learning and its computer 

vision applications. In European Conference on Computer Vision, 442–455. Springer.

Related Work
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The ground distance 

matrix is fixed.

A fixed ground distance matrix D is infeasible 

in many applications.
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The Framework of EMD Metric Learning
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The Formulation of EMD Metric Learning

The objective is to preserve the topological structure of 

the data and satisfy triplet constraints simultaneously.
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The triplet constraints 
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The number of triplets: N3       kikgN

 How to construct triplet constraints?

Use all possible triplet constrains

Training Data Selection

nearest neighbors to construct triplets



The number of triplets: N3       kikgN

 How to construct triplet constraints?

Use all possible triplet constrains

Training Data Selection

nearest neighbors to construct triplets

 How to search nearest neighbors?

Calculate the exact EMD between all pairs of signatures.
relaxed

Time complexity: O(n3 logn)    O(n2)
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Document Classification

The TWITTER dataset

Contains 2176 objects labeled with ‘positive’, ‘negative’, and ‘neutral’.

Each nonstop word is represented by a 300-d feature.

The average number of unique words per document is 9.9

State-of-the-art methods

Covariance Discriminative Learning

Covariance Discriminative Learning 

with PLS CVPR’12

Projection Metric Learning CVPR’15
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Multi-View Object Classification

The NTU dataset

Contains 401 objects from 16 classes

Each object contains 60 views.

Extract the 4096-d CNN feature for each view

State-of-the-art methods
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On parameter sensitivity and convergence

Parameter sensitivity Convergence curve

(b) The NTU Dataset

(a) The TWITTER Dataset



We propose an EMD metric learning algorithm targeting 

on a more general setting. 

We apply EMD metric learning on the tasks of multi-view 

object classification and text classification.

 EMD metric learning can achieve about 5% improvement 

compared with the traditional EMD.

Conclusion
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