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Multivariate Distribution

Earth Mover’ s Distance (EMD), t
argeting at measuring the many-t
o-many distances, has shown its s
iori

I love this movie! It's sweet,
but with satirical humor. The [ oncentiated
dialogue is great and the MD metric toward

adventure scenes are fun... "
It manages to be whimsical rnin,
and romantic while laughing Pl R
at the conventions of the for EMD ground d
faiw tale genre. | would generation which ¢
recommend it to just about
anyone. |'ve seen it several

times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

Bookshelf Door

How to measure the similarity between two

multivariate distributions (signatures)?
« K-L Divergence (Goldberger et al. 2003)
« Maximum Mean Discrepancy (Borgwardt et al. 2006)

 Earth Mover’s Distance [1]

[1] Rubner, Yossi, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover's distance as a
metric for image retrieval. International Journal of Computer Vision 40(2): 99-121.
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Earth Mover’s Distance

EMD is a solution to the old transportation problem.

A set of suppliers: P = {(p1, Wp, ), «» (Om, Wp. )}
A set of consumers: Q = {(q1,wg,), -, (Gn, Wg, )}
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Supplier Consumer EMD(P,Q) =
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Earth Mover’s Distance
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signature P

Earth Mover’s Distance

EMD(P, Q)=

signature Q

Ground Distance
Matrix D
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Earth Mover’s Distance

signature Q
signature P Fo-om o !

Ground Distance
Matrix D
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Flow Network F ‘
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EMD Distance ‘

EMD(P, Q)=

Optimize EMD—Optimize ground distance matrix



Related Work

Wang et al. learn an optlmal ground distance matrix directly. [2]

_________________ .
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[2] Wang, F., and Guibas, L. J. 2012. Supervised earth movers distance learning and its computer
vision applications. In European Conference on Computer Vision, 442-455. Springer.



Related Work

Wang et al. learn an optlmal ground distance matrix directly. [2]

_________________ .
3 Raw Data and Position- I | Hlstogram :

fixed Cluster Centers | : Descriptor :

~
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matrix is fixed.
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A fixed ground distance matrix D is infeasible

In many applications.
[2] Wang, F., and Guibas, L. J. 2012. Supervised earth movers distance learning and its computer
vision applications. In European Conference on Computer Vision, 442-455. Springer.



Earth Mover’s Distance

Ground Distance Metric A \
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The Framework of EMD Metric Learning

Training Data

@)
@)

O

O||O

O|10| .

ol
Q||

|

I

I

I

I

I

! @)
| .
I

I

: 0, 0, O
I

0, Og

Signatures

:- EMD Metric Learning :
: min f(A) = Alternative :
1A Optimization !
I (1-2 Z EMD A (0, 0p) :
(a,b)es 1

FaaA

oy

[+ EMD A (0,,0p)
(a,b,c)ET
—EMDA(Oq, Oc)]+

e o o o s o o



The Formulation of EMD Metric Learning

The objective is to preserve the topological structure of
the data and satisfy triplet constraints simultaneously.

Cost function:
minf(A) = (1=1) ) EMDs(04,0p)
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The Formulation of EMD Metric Learning

The objective is to preserve the topological structure of
the data and satisfy triplet constraints simultaneously.

Cost function:
min £ (A) =|(1 - 1) z EMDA(O,, 0p) le— Preserve the topological
A structure of the data

(a,b)ES
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The Formulation of EMD Metric Learning

The objective is to preserve the topological structure of
the data and satisfy triplet constraints simultaneously.

Cost function:

mAin f(A) =

a,b)eS

(1-2) ) EMDy(0,05)

Preserve the topological
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Training Data Selection

O How to construct triplet constraints?

Use aHpossthtetrpleteonstrans

nearest neighbors to construct triplets

The number of triplets: N°—=kk /N " @&
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Training Data Selection

O How to construct triplet constraints?

Use aHpossthtetrpleteonstrans

nearest neighbors to construct triplets

The number of triplets: N°—k;k N n e

2 X % d\\\\\\\ : —X'}“\n\\
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O How to search nearest neighbors? .77 ..~ Sovsiaind?
Calculate the exaet EMD between all pairs of signatures.
relaxed
> i1 WP i=1
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REMD(P,Q)=4q %' ~4 ., 7=t
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Time complexity: O(n®logn)—0(n?)




Optimization

( ] N

Cost function:

min f (A, F)

=(1-2) ) EMD;(0n,0y)
(a,p)eS

+1 ) [+ EMDA(04,0,) — EMDA(05, 00,4
(a,b,c)ET

=1-M » (7"“ 7”” Fap (i) xb)>

(a,p)es

) [u+ (Z " Faspd(x, x,,)>

(a,b,c)ET

(2 | Bt ))]




Optimization

(Cost function:
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Optimization

(Cost function: )

i (A, F)
=(1-2) ) EMD;(0n,0y)
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Document 1
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Document Classification

Testing
Document O A
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Suzhou | word2vec o ‘really’
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Document Classification
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Document Classification

The TWITTER dataset

Contains 2176 objects labeled with ‘positive’, ‘negative’, and ‘neutral’.
Each nonstop word is represented by a 300-d feature.

The average number of unique words per documentis 9.9

State-of-the-art methods
Covariance Discriminative Learning
Covariance Discriminative Learning
with PLS cvPr12

Projection Metric Learning cvrRr'15
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Multi-View Object Classification
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Multi-View Object Classification
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Multi-View Object Classification
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Multi-View Object Classification

The NTU dataset

Contains 401 objects from 16 classes

Each object contains 60 views.

Extract the 4096-d CNN feature for each view

State-of-the-art methods

Manifold Discriminant Analysis cvrr09
Covariance Discriminative Learning
Covariance Discriminative Learning
with PLS cvPr12
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On parameter sensitivity and convergence

Parameter sensitivity

x100

Convergence curve
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Conclusion

O We propose an EMD metric learning algorithm targeting
on a more general setting.

O We apply EMD metric learning on the tasks of multi-view
object classification and text classification.

O EMD metric learning can achieve about 5% improvement

compared with the traditional EMD.
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