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3D Object Recognition
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3D Object Representation

Multi-modal Data
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3D Object Representation

View-based Representation
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3D Object Representation
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How to combine multiple 3D representations
towards better 3D object recognition performance?

Challenge 1: Exploit correlation among multi-modal data

Challenge 2: Consider multi-modal data simultaneously during
multi-modal fusion process
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Multi-Modal Data
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Multi-Hypergraph Learning [Gao et al. TIP’12]

Disadvantages:

1. The computational cost is very high.
2. Multi-modal data are only considered in the fusion part.




Motivations

How to combine multiple 3D representations
towards better 3D object recognition performance?

Challenge 1: Exploit correlation among multi-modal data
Challenge 2: Consider multi-modal data simultaneously during
multi-modal fusion process

Task 1: Employ multi-hypergraph structure to formulate the

correlation among 3D objects
Task 2: Conduct cross diffusion process on the multi-

hypergraph structure
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Correlation Modelling

Correlation Modelling
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Diffusion Process on Single Hypergraph
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The diffusion process is much faster than traditional methods.



Cross Diffusion Process on Multi-Hypergraph
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Advantages:
1. The multi-hypergraph structure can model the high-order correlation

among multi-modal data.
2. The cross diffusion process can combine multi-modal data effectively.
3. The cross diffusion process is very fast.




Experiments
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Two kinds of 3D features:
O Multi-View Convolutional Neural Networks (MVCNN)
O Group-View Convolutional Neural Networks (GVCNN)

State-of-the-art methods

O MVCNN [1] and GVCNN [2]

O MVCNN+HL and GVCNN+HL

O MVCNN+GVCNN+HL

O MVCNN+GVCNN+MHL [3]

O Cross Diffusion on Multi-Hypergraph (CDMH)

[1] Su et al. Multi-View Convolutional Neural Networks for 3D Shape Recognition. CVPR’15
[2] Feng at al. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. CVPR’18
[3] Gao et al. 3D Object Retrieval and Recognition with Hypergraph Analysis. TIP'12



Experimental Results

Classification Accuracy

Method ModelNet40 NTU
MVCNN 90.10% 79.89%
GVCNN 93.10% 82.30%
MVCNN+HL 90.68% 79.89%
GVCNN+HL 92.14% 82.84%
MVCNN+GVCNN+HL 93.23% 80.43%
MVCNN+GVCNN-+MHL 96.19% 83.38%
CDMH QGJG@ 84.45%
TSR 94kl SN SHSEH 3YO15%.
Time Cost

Method ModelNet40 NTU
MVCNN+GVCNN+MHL 869.4s 6.652s
CDMH 0.332s

The speed is increased by 400 times.

Our proposed method can achieve better performance and

faster speed than state-of-the-art methods.
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On Hypergraph Construction and Diffusion Process

On Hypergraph Construction
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Our proposed method can achieve stable performance with

different parameters and converge fast.



Conclusion

0 We propose a cross diffusion method on multi-nypergraph
for multi-modal 3D object recognition.

O The proposed method is more effective and efficient than
the state-ot-the-art methods.

O The proposed method is a general framework which can
be used in other applications with multi-modal data.
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Conclusion

0 We propose a cross diffusion method on multi-nypergraph
for multimodal 3D object recognition.

O The proposed method is more effective and efficient than
the state-ot-the-art methods.

O The proposed method is a general framework which can
be used in other applications with multi-modal data.
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