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3D Object Representation

How to combine multiple 3D representations 

towards better 3D object recognition performance?

Challenge 1: Exploit correlation among multi-modal data

Challenge 2: Consider multi-modal data simultaneously during

multi-modal fusion process

Point Cloud Volumetric MeshView
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Related Work

Multi-Modal Data

Multi-Hypergraph Learning [Gao et al. TIP’12]

Disadvantages:

1. The computational cost is very high.

2. Multi-modal data are only considered in the fusion part.



Motivations

How to combine multiple 3D representations 

towards better 3D object recognition performance?

Task 1: Employ multi-hypergraph structure to formulate the 

correlation among 3D objects 

Task 2: Conduct cross diffusion process on the multi-

hypergraph structure 

Challenge 1: Exploit correlation among multi-modal data

Challenge 2: Consider multi-modal data simultaneously during

multi-modal fusion process
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Correlation Modelling
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Diffusion Process on Single Hypergraph
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The diffusion process is much faster than traditional methods. 
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Cross Diffusion Process on Multi-Hypergraph
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Advantages:

1. The multi-hypergraph structure can model the high-order correlation 

among multi-modal data. 

2. The cross diffusion process can combine multi-modal data effectively.

3. The cross diffusion process is very fast. 



Experiments

Two kinds of 3D features:
 Multi-View Convolutional Neural Networks (MVCNN)
 Group-View Convolutional Neural Networks (GVCNN)

State-of-the-art methods
 MVCNN [1] and GVCNN [2]
 MVCNN+HL and GVCNN+HL
 MVCNN+GVCNN+HL
 MVCNN+GVCNN+MHL [3]
 Cross Diffusion on Multi-Hypergraph (CDMH)
[1] Su et al. Multi-View Convolutional Neural Networks for 3D Shape Recognition. CVPR’15

[2] Feng at al. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. CVPR’18

[3] Gao et al. 3D Object Retrieval and Recognition with Hypergraph Analysis. TIP’12

Cross
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Door
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Construction

NTU (2012 objects)ModelNet40 (12311 objects)



Experimental Results

Classification Accuracy

Our proposed method can achieve better performance and

faster speed than state-of-the-art methods. 

Time Cost

multi-modal representationsThe error rate is dropped by 15%.

The speed is increased by 400 times.



Experimental Results

Confusion Matrix

(a) The ModelNet40 Dataset (b) The NTU Dataset



On Hypergraph Construction and Diffusion Process

On Hypergraph Construction

On Diffusion Process

(a) ModelNet40 (b) NTU

Our proposed method can achieve stable performance with 

different parameters and converge fast. 

(a) ModelNet40 (b) NTU



We propose a cross diffusion method on multi-hypergraph 

for multi-modal 3D object recognition. 

 The proposed method is more effective and efficient than 

the state-ot-the-art methods.

 The proposed method is a general framework which can 

be used in other applications with multi-modal data.

Conclusion
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We propose a cross diffusion method on multi-hypergraph 

for multimodal 3D object recognition. 

 The proposed method is more effective and efficient than 

the state-ot-the-art methods.

 The proposed method is a general framework which can 

be used in other applications with multi-modal data.

Conclusion
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