

Cross Diffusion on Multi-Hypergraph for Multi-Modal 3D Object Recognition

Contents

- 1. Research Background
- 2. Related Work
- 3. Cross Diffusion on Multi-Hypergraph for Multi-Modal 3D Object Recognition
- 4. Experiments and Discussions
- 5. Conclusion

3D Object Recognition

3D Object Representation

Multi-modal Data

View-based Representation

Point Cloud

View

MVCNN

Volumetric

Mesh

FCN + CNN + View Proling FCN + CNN + View Pooling i Group FCN + CNN + View Pooling Group Group FCN + CNN + View Pooling Group FCN + CNN + View Pooling Group FCN + CNN + View Pooling Group Group FCN + CNN + View Pooling FCN + View Pooling

GVCNN

3D Object Representation

Multi-modal Data

Point Cloud

View

View-based Representation

(a) MVCNN

Group

Final View

Raw View

Volumetric

Descriptors Descriptors Descriptors FCN CNN View Shape CNN Descriptor ECN Viev Group Pooling FCN CNN Fusion Ben TV Sta Cup FCN Poolin CNN Weight

(b) GVCNN

3D Object Representation

How to combine multiple 3D representations towards better 3D object recognition performance?

Challenge 1: Exploit correlation among multi-modal data **Challenge 2**: Consider multi-modal data simultaneously during multi-modal fusion process

Related Work

3D Object Representations

Volumetric Data

.

[Wu et al. 2015] (3D ShapeNets) [Maturana et al. 2015] (VoxNet) [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

Point Cloud Data

[Qi et al. 2017] (PointNet) [Qi et al. 2017] (PointNet++) [Fan et al. 2017] (PointSetGen)

How to combine them?

[Su et al. 2015] (MVCNN) [Kalogerakis et al. 2016] [Guo et al. 2016] [Feng et al. 2018] (GVCNN)

View Data

Mesh Data

.

[Defferard et al. 2016] [Henaff et al. 2015] [Yi et al. 2017]

Related Work

Multi-Hypergraph Learning [Gao et al. TIP'12]

Disadvantages:

- 1. The computational cost is very high.
- 2. Multi-modal data are only considered in the fusion part.

Motivations

How to combine multiple 3D representations towards better 3D object recognition performance?

Challenge 1: Exploit correlation among multi-modal data **Challenge 2**: Consider multi-modal data simultaneously during multi-modal fusion process

Task 1: Employ multi-hypergraph structure to formulate the correlation among 3D objects Task 2: Conduct cross diffusion process on the multihypergraph structure

Framework

Correlation Modelling

Correlation Modelling

Hypergraph

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$

Each vertex represents an object.

Example

Diffusion Process on Single Hypergraph

The diffusion process is much faster than traditional methods.

Cross Diffusion Process on Multi-Hypergraph

Advantages:

- 1. The multi-hypergraph structure can model the high-order correlation among multi-modal data.
- 2. The cross diffusion process can combine multi-modal data effectively.
- 3. The cross diffusion process is very fast.

Experiments

Two kinds of 3D features:

- Multi-View Convolutional Neural Networks (MVCNN)
- Group-View Convolutional Neural Networks (GVCNN)

State-of-the-art methods

- MVCNN [1] and GVCNN [2]
- MVCNN+HL and GVCNN+HL
- MVCNN+GVCNN+HL
- MVCNN+GVCNN+MHL [3]
- Cross Diffusion on Multi-Hypergraph (CDMH)
- [1] Su et al. Multi-View Convolutional Neural Networks for 3D Shape Recognition. CVPR'15
- [2] Feng at al. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. CVPR'18
- [3] Gao et al. 3D Object Retrieval and Recognition with Hypergraph Analysis. TIP'12

Experimental Results

Classification Accuracy

Method	ModelNet40	NTU
MVCNN	90.10%	79.89%
GVCNN	93.10%	82.30%
MVCNN+HL	90.68%	79.89%
GVCNN+HL	92.14%	82.84%
MVCNN+GVCNN+HL	93.23%	80.43%
MVCNN+GVCNN+MHL	96.19%	83.38%
CDMH	96.76%	$\boldsymbol{84.45\%}$
The life on palal is encosed at ins.		
Time Cost		
Method	ModelNet40	NTU
MVCNN+GVCNN+MHL	869.4s	$6.652 \mathrm{s}$

The speed is increased by **400** times.

2.233s

0.332s

CDMH

Our proposed method can achieve better performance and faster speed than state-of-the-art methods.

Experimental Results

Confusion Matrix

On Hypergraph Construction and Diffusion Process

On Hypergraph Construction

Our proposed method can achieve stable performance with different parameters and converge fast.

Conclusion

- We propose a cross diffusion method on multi-hypergraph for multi-modal 3D object recognition.
- The proposed method is more effective and efficient than the state-ot-the-art methods.
- The proposed method is a general framework which can be used in other applications with multi-modal data.

Medical Image Analysis

Social Media Analysis

References

[1] Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum 22(3), 223-232 (2003)

[2] Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-View 3D Object Detection Network for Autonomous Driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. vol. 1 (2017)

[3] Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

[4] Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D Object Retrieval and Recognition with Hypergraph Analysis. IEEE Transactions on Image Processing 21(9), 4290-4303 (2012)

[5] Gao, Y., Wang, M., Zha, Z.J., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing 22(1), 363-376 (2013)

[6] Guo, H., Wang, J., Gao, Y., Li, J., Lu, H.: Multi-View 3D Object Retrieval with Deep Embedding Network. IEEE Transactions on Image Processing 25(12), 5526-5537 (2016)

[7] Hong, R., Hu, Z., Wang, R., Wang, M., Tao, D.: Multi-View Object Retrieval Via Multi-Scale Topic Models. IEEE Transactions on Image Processing 25(12), 5814-5827 (2016)

[8] Hong, R., Zhang, L., Zhang, C., Zimmermann, R.: Flickr Circles: Aesthetic Tendency Discovery by Multi-View Regularized Topic Modeling. IEEE Transactions on Multimedia 18(8), 1555-1567 (2016)

[9] Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3376-3383. IEEE (2010)

Thanks!

Conclusion

- We propose a cross diffusion method on multi-hypergraph for multimodal 3D object recognition.
- The proposed method is more effective and efficient than the state-ot-the-art methods.
- The proposed method is a general framework which can be used in other applications with multi-modal data.

X-ray

digg

Medical Image Analysis

Social Media Analysis

twitte

