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Research Background

Hypergraph Learning

Hypergraph laplacian ∆

A well constructed hypergraph structure can represent the 

data correlation accurately, yet leading to better performance.

recognition segmentationsorting classification[4]

[Gao et al. , 2012][An et al. , 2017] [Zhu et al. , 2015] [Huang et al. , 2009]
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Research Background

Hypergraph Construction

Imprecise
Feature

Label

Imcomplete

 k-nn method (Huang et al., 2009)

 clustering-based method (Gao et al., 2012)

 spare representation method (Wang et al., 2015)

A static hypergraph structure cannot represent the data 

correlation accurately.



Motivation

Hypergraph Construction

Feature

Label

Gradually complete
Dynamic Hypergraph

Structure

 construct the hypergraph structure using both the feature

information and the label information

 gradually complete the label of all data and dynamically

adapt hypergraph structure simultaneouly



Dynamic Hypergraph Structure Learning

 jointly learn the hypergraph structure and the label projection

matrix

 optimize the hypergraph structure from both the data label

space and the data feature space



Cost function: 

The Formulation of DHSL

The objective should satisfy three conditions.

൯ar g 𝑚𝑖𝑛
𝐅,0⪯𝐇⪯1

𝒬(𝐅,𝐇) = Ψ(𝐅,𝐇) + 𝛽Ω(𝐇) + 𝜆ℛemp(𝐅

1. The label projection matrix F should be smooth on H.

2. H should be smooth on the data from both label space 

and feature space.

3. The empirical loss
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Cost function: 

Optimization
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Dynamic Hypergraph

Structure Learning

3D Shape Recognition

State-of-the-art methods
Multi-view Convolutional Neural Networks [Su et al., 2015]

Graph-based Learning [Zhou et al., 2003]

Traditional Hypergraph Learning  [Zhou et al., 2007]

Hypergraph Learning with Hyperedge Weight Learning  [Gao et al., 2013]

Dynamic Hypergraph Structure Learning (DHSL)

BOOKSHELF

Datasets

3D Object

Feature

Extraction

 The NTU dataset contains 2020 objects from 67 classes.

 The ESB dataset contains 866 objects from 43 classes.



3D Shape Recognition

Experimental Results



Gesture Recognition

State-of-the-art methods
HON4D [Oreifej and Liu, 2013] 

Graph-based Learning [Zhou et al., 2003]

Traditional Hypergraph Learning  [Zhou et al., 2007]

Hypergraph Learning with Hyperedge Weight Learning  [Gao et al., 2013]

Dynamic Hypergraph Structure Learning (DHSL)

 The MSRGesture3D dataset: 333 depth sequences from 12 classes.

 The Gesture3DMotion dataset: 384 depth sequences from 12 classes.

Datasets

Depth Sequence

Dynamic Hypergraph

Structure Learning

DRAW TICK

Feature

Extraction



Gesture Recognition

(a) The MSRGesture3D Dataset (b) The Gesture3DMotion Dataset



We propose a dynamic hypergraph structure learning 

algorithm to jointly optimize the hypergraph structure and 

learn the label projection matrix.

We apply the proposed method on the tasks of 3D shape

recognition and gesture recognition. The proposed

method can achieve about 4%~6% improvement 

compared with the traditional hypergraph learning method.

Conclusion
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