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Research Background

Correlation Modelling

Graph Hype?graph

Example
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each vertex represents an object



Research Background

Hypergraph Learning

Hypergraph laplacian A
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arg min {tr (FTAF) + \|F — YHF}

classification
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sorting segmentation
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A well constructed hypergraph structure can represent the
data correlation accurately, yet leading to better performance.



Research Background

Hypergraph Construction

Feature
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Research Background

Hypergraph Construction

Imprecise
Feature

Imcomplete
Label

O k-nn method (Huang et al., 2009)
O clustering-based method (Gao et al., 2012)
O spare representation method (Wang et al., 2015)

A static hypergraph structure cannot represent the data
correlation accurately.



Motivation

Hypergraph Construction

Feature
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Gradually complete

Dynamic Hypergraph
Structure

O construct the hypergraph structure using both the feature
Information and the label information

O gradually complete the label of all data and dynamically
adapt hypergraph structure simultaneouly



Dynamic Hypergraph Structure Learning
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O jointly learn the hypergraph structure and the label projection
matrix

O optimize the hypergraph structure from both the data label
space and the data feature space



The Formulation of DHSL

Cost function:

argF(g?;LngQ(F H) = Y(F,H)

The objective should satisfy three conditions.
1. The label projection matrix F should be smooth on H.
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The Formulation of DHSL

Cost function:

arg min Q(F,H) = pO(H)

The objective should satisfy three conditions.

2. Hshould be smooth on the data from both label space
and feature space.

QO (H) = tr ((I _ D;%HWDglﬂTD;%) XXT)




The Formulation of DHSL

Cost function:

arg . (7)2%1715 . Q(F,H) = AR emp (F)

The objective should satisfy three conditions.

3. The empirical loss

Remp(F) = |[F — Y| 7,
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Optimization

Cost function:

argF’gg%'{nﬁl Q(F,H) = W(F,H) + Q(H) + ARmp (F)
1 1

= tr((/— D,?HWD;'H™D_?)(FFT + SXX™)) + 1 | F - Y |12

Fix H, optimize F
arg mFin Q(F) = W(F) + ARemp(F) = tr(AFFT) +AIF=Y|?

F = l+1A _1Y
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Optimization

Cost function:

argp,(@h@1 Q(F,H) = W(F,H) + Q(H) + ARmp (F)
1 1

= tr((/— D,?HWD;'H™D_?)(FFT + SXX™)) + 1 | F - Y |12

Fix F, Optimize H

1 1
arg min Q(H) = W(H) + BQ(H) = tr ((1— DvZHWDngTDvZ)) (FT + pXXT)
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7Q(H) = J( ® H'D_ %KD, ?H)WD;%+D,“HWD;'H'D, *KJW-2D,*KD ,*HWD_"
projected gradient method

Hy11 = PH, — aVO(Hy))

hi; if0<h; <1
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3D Shape Recognition

» Feature =»i Dynamic Hypergraph
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3D Object BOOKSHELF

Datasets

O The NTU dataset contains 2020 objects from 67 classes.
O The ESB dataset contains 866 objects from 43 classes.

State-of-the-art methods

Multi-view Convolutional Neural Networks [Su et al., 2015]

Graph-based Learning [Zhou et al., 2003]

Traditional Hypergraph Learning [Zhou et al., 2007]

Hypergraph Learning with Hyperedge Weight Learning [Gao et al., 2013]
Dynamic Hypergraph Structure Learning (DHSL)



3D Shape Recognition

Experimental Results
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(b) The ESB Dataset




Gesture Recognition

» Dynamic Hypergraph :
| Structure Learning

Depth Sequence DRAW TICK

Datasets

O The MSRGesture3D dataset: 333 depth sequences from 12 classes.
O The Gesture3DMotion dataset: 384 depth sequences from 12 classes.

State-of-the-art methods

HONA4D |[Oreife] and Liu, 2013]

Graph-based Learning [Zhou et al., 2003]

Traditional Hypergraph Learning [zhou et al., 2007]

Hypergraph Learning with Hyperedge Weight Learning [Gao et al., 2013]
Dynamic Hypergraph Structure Learning (DHSL)



Gesture Recognition
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(b) The Gesture3DMotion Dataset



Conclusion

O We propose a dynamic hypergraph structure learning
algorithm to jointly optimize the hypergraph structure and
learn the label projection matrix.

O We apply the proposed method on the tasks of 3D shape
recognition and gesture recognition. The proposed
method can achieve about 4%~6% improvement

compared with the traditional hypergraph learning method.
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